Every generating isotone projection cone is latticial and correct

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When every $P$-flat ideal is flat

In this paper‎, ‎we study the class of rings in which every $P$-flat‎ ‎ideal is flat and which will be called $PFF$-rings‎. ‎In particular‎, ‎Von Neumann regular rings‎, ‎hereditary rings‎, ‎semi-hereditary ring‎, ‎PID and arithmetical rings are examples of $PFF$-rings‎. ‎In the context domain‎, ‎this notion coincide with‎ ‎Pr"{u}fer domain‎. ‎We provide necessary and sufficient conditions for‎...

متن کامل

Generating Isotone Galois Connections on an Unstructured Codomain

Given a mapping f : A → B from a partially ordered set A into an unstructured set B, we study the problem of defining a suitable partial ordering relation on B such that there exists a mapping g : B → A such that the pair of mappings (f, g) forms an isotone Galois connection between partially ordered sets.

متن کامل

Generating Topologically Correct Schematic Maps

This paper studies the creation of schematic maps from traditional vector-based, carto-graphic information. An algorithm is proposed to modify positions of lines in the original input map with the goal of producing as output a schematic map that meets certain geometric and aesthetic criteria. Special emphasis is placed here on preserving topological structure of features during this transformat...

متن کامل

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

متن کامل

Weakly Isotone and Strongly Reverse Isotone Mappings of Relational Systems

The setting of this article is Classical algebra and Bishop’s constructive algebra (the algebra based on the Intuitionistic logic). The Esakia’s concept in the classical mathematics of strongly isotone mapping between ordered sets is extended onto two different concepts of mappings: on the concept of weakly isotone and the concept of strongly reverse isotone mapping of relational systems. Some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1990

ISSN: 0022-247X

DOI: 10.1016/0022-247x(90)90383-q